Constructing Uniquely Realizable Graphs
نویسندگان
چکیده
In the Graph Realization Problem (GRP), one is given a graph G, a set of non-negative edge-weights, and an integer d. The goal is to find, if possible, a realization of G in the Euclidian space R, such that the distance between any two vertices is the assigned edge weight. The problem has many applications in mathematics and computer science, but is NP-hard when the dimension d is fixed. Characterizing tractable instances of GRP is a classical problem, first studied by Menger in 1931. We construct two new infinite families of GRP instances whose solution can be approximated up to an arbitrary precision in polynomial time. Both constructions are based on the blow-up of fixed small graphs with large expanders. Our main tool is the Connelly’s condition in Rigidity Theory, combined with an explicit construction and algebraic calculations of the rigidity (stress) matrix. As an application of our results, we give a deterministic construction of uniquely k-colorable vertex-transitive expanders. ∗Department of Mathematics, UCLA, Los Angeles, CA 90095. Email: {pak,vilenchik}@math.ucla.edu
منابع مشابه
Solis Graphs and Uniquely Metric Basis Graphs
A set $Wsubset V (G)$ is called a resolving set, if for every two distinct vertices $u, v in V (G)$ there exists $win W$ such that $d(u,w) not = d(v,w)$, where $d(x, y)$ is the distance between the vertices $x$ and $y$. A resolving set for $G$ with minimum cardinality is called a metric basis. A graph with a unique metric basis is called a uniquely dimensional graph. In this paper, we establish...
متن کاملUnidigraphic and unigraphic degree sequences through uniquely realizable integer-pair sequences
In this paper we use the concept of integer-pair sequences, an invariant of graphs and digraphs introduced in Hakimi and Patrinos [9], and results on its unique realizability, in Das [4,5], to obtain results on the unique realizability of degree sequences, another invariant of graphs and digraphs. We thus present a unified approach to solving the problem of unique realizability of these two inv...
متن کاملTypes in o - minimal theories
Types in o-minimal theories by Janak Daniel Ramakrishnan Doctor of Philosophy in Mathematics University of California, Berkeley Professor Thomas Scanlon, Chair We extend previous work on classifying o-minimal types, and develop several applications. Marker developed a dichotomy of o-minimal types into “cuts” and “noncuts,” with a further dichotomy of cuts being either “uniquely” or “non-uniquel...
متن کاملConstructing vertex decomposable graphs
Recently, some techniques such as adding whiskers and attaching graphs to vertices of a given graph, have been proposed for constructing a new vertex decomposable graph. In this paper, we present a new method for constructing vertex decomposable graphs. Then we use this construction to generalize the result due to Cook and Nagel.
متن کاملParity Versions of 2-Connectedness
This paper introduces parity versions of familiar graph theoretic results, in particular results related to 2-connectedness. The even and odd circuit connected graphs are characterized. The realizable, even-realizable, alternating-realizable, dual realizable and dual even-realizable graphs are classified.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete & Computational Geometry
دوره 50 شماره
صفحات -
تاریخ انتشار 2013